Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Heliyon ; 8(10): e11026, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2069051

ABSTRACT

Background: Computational fluid dynamics (CFD) simulations, in-vitro setups, and experimental ex-vivo approaches have been applied to numerous alveolar geometries over the past years. They aimed to study and examine airflow patterns, particle transport, particle propagation depth, particle residence times, and particle-alveolar wall deposition fractions. These studies are imperative to both pharmaceutical and toxicological studies, especially nowadays with the escalation of the menacing COVID-19 virus. However, most of these studies ignored the surfactant layer that covers the alveoli and the effect of the air-surfactant surface tension on flow dynamics and air-alveolar surface mechanics. Methods: The present study employs a realistic human breathing profile of 4.75s for one complete breathing cycle to emphasize the importance of the surfactant layer by numerically comparing airflow phenomena between a surfactant-enriched and surfactant-deficient model. The acinar model exhibits physiologically accurate alveolar and duct dimensions extending from lung generations 18 to 23. Airflow patterns in the surfactant-enriched model support previous findings that the recirculation of the flow is affected by its propagation depth. Proximal lung generations experience dominant recirculating flow while farther generations in the distal alveolar region exhibit dominant radial flows. In the surfactant-enriched model, surface tension values alternate during inhalation and exhalation, with values increasing to 25 mN/m at the inhalation and decreasing to 1 mN/m at the end of the exhalation. In the surfactant-deficient model, only water coats the alveolar walls with a high surface tension value of 70 mN/m. Results: Results showed that surfactant deficiency in the alveoli adversely alters airflow behavior and generates unsteady chaotic breathing through the production of vorticities, accompanied by higher vorticity magnitudes (100% increase at the end of exhalation) and higher velocity magnitudes (8.69% increase during inhalation and 11.9% increase during exhalation). In addition, high air-water surface tension in the surfactant-deficient case was found to induce higher shear stress values (by around a factor of 10) on the alveolar walls than that of the surfactant-enriched case. Conclusion: Overall, it was concluded that the presence of the surfactant improves respiratory mechanics and allows for smooth breathing and normal respiration.

2.
Int J Environ Res Public Health ; 19(8)2022 04 11.
Article in English | MEDLINE | ID: covidwho-1785692

ABSTRACT

Genetic variants of severe acute respiratory syndrome coronavirus (SARS-CoV-2) have been globally surging and devastating many countries around the world. There are at least eleven reported variants dedicated with inevitably catastrophic consequences. In 2021, the most dominant Delta and Omicron variants were estimated to lead to more severity and deaths than other variants. Furthermore, these variants have some contagious characteristics involving high transmissibility, more severe illness, and an increased mortality rate. All outbreaks caused by the Delta variant have been rapidly skyrocketing in infection cases in communities despite tough restrictions in 2021. Apart from it, the United States, the United Kingdom and other high-rate vaccination rollout countries are still wrestling with this trend because the Delta variant can result in a significant number of breakthrough infections. However, the pandemic has changed since the latest SARS-CoV-2 variant in late 2021 in South Africa, Omicron. The preliminary data suggest that the Omicron variant possesses 100-fold greater than the Delta variant in transmissibility. Therefore, this paper aims to review these characteristics based on the available meta-data and information from the first emergence to recent days. Australia and the five most affected countries, including the United States, India, Brazil, France, as well as the United Kingdom, are selected in order to review the transmissibility, severity and fatality due to Delta and Omicron variants. Finally, the vaccination programs for each country are also reviewed as the main factor in prevention.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Disease Outbreaks , Humans , Pandemics , SARS-CoV-2/genetics , United States/epidemiology
3.
Phys Fluids (1994) ; 33(8): 081911, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1373473

ABSTRACT

The recent outbreak of the COVID-19 causes significant respirational health problems, including high mortality rates worldwide. The deadly corona virus-containing aerosol enters the atmospheric air through sneezing, exhalation, or talking, assembling with the particulate matter, and subsequently transferring to the respiratory system. This recent outbreak illustrates that the severe acute respiratory syndrome (SARS) coronavirus-2 is deadlier for aged people than for other age groups. It is evident that the airway diameter reduces with age, and an accurate understanding of SARS aerosol transport through different elderly people's airways could potentially help the overall respiratory health assessment, which is currently lacking in the literature. This first-ever study investigates SARS COVID-2 aerosol transport in age-specific airway systems. A highly asymmetric age-specific airway model and fluent solver (ANSYS 19.2) are used for the investigation. The computational fluid dynamics measurement predicts higher SARS COVID-2 aerosol concentration in the airway wall for older adults than for younger people. The numerical study reports that the smaller SARS coronavirus-2 aerosol deposition rate in the right lung is higher than that in the left lung, and the opposite scenario occurs for the larger SARS coronavirus-2 aerosol rate. The numerical results show a fluctuating trend of pressure at different generations of the age-specific model. The findings of this study would improve the knowledge of SARS coronavirus-2 aerosol transportation to the upper airways which would thus ameliorate the targeted aerosol drug delivery system.

4.
Phys Fluids (1994) ; 33(6): 061903, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1266033

ABSTRACT

The recent outbreak of the SARS CoV-2 virus has had a significant effect on human respiratory health around the world. The contagious disease infected a large proportion of the world population, resulting in long-term health issues and an excessive mortality rate. The SARS CoV-2 virus can spread as small aerosols and enters the respiratory systems through the oral (nose or mouth) airway. The SARS CoV-2 particle transport to the mouth-throat and upper airways is analyzed by the available literature. Due to the tiny size, the virus can travel to the terminal airways of the respiratory system and form a severe health hazard. There is a gap in the understanding of the SARS CoV-2 particle transport to the terminal airways. The present study investigated the SARS CoV-2 virus particle transport and deposition to the terminal airways in a complex 17-generation lung model. This first-ever study demonstrates how far SARS CoV-2 particles can travel in the respiratory system. ANSYS Fluent solver was used to simulate the virus particle transport during sleep and light and heavy activity conditions. Numerical results demonstrate that a higher percentage of the virus particles are trapped at the upper airways when sleeping and in a light activity condition. More virus particles have lung contact in the right lung than the left lung. A comprehensive lobe specific deposition and deposition concentration study was performed. The results of this study provide a precise knowledge of the SARs CoV-2 particle transport to the lower branches and could help the lung health risk assessment system.

SELECTION OF CITATIONS
SEARCH DETAIL